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1. Introduction 

Consider observed random variables Yl , •. "Yn which follow a 

linear regression model; that is, let Yi = 11i + O"E i , where 

l1
i 

= ! B.x i · 
j=l J J 

(i=l, .•• ,n) 

and El, •.. ,En are independent and identically distributed with known 

probability density function f. The vectors x. = (x'l""'x, )T 
l. l. l.p 

(i=l, ..• ,n) of covariate values are assumed to be known, and the vector 

13 = (Bl, ••. ,Bp) of regression coefficients is to be estimated. Based 

on the sample Y = (Yl, •.. ,Yn), the log likelihood function for S 

and 8 = log 0" is 

1(S,8;Y) 
n 

-n8 + I log f{e -8 (Y. - Sx.)} 
i=l l. l. 

Several authors, including Fisher (1934), Fraser (1979), and Ver-

hagen (1961), have argued that inferences concerning the parameters S 

and 0" should be made conditionally on the sample configuration 
A 

consisting of the standardized residuals A. = (Y.-Sx.) 
l. l. l. 

fa (i=l, ••• ,n), where ~ and 
A 

0" are the maximum likelihood estima-

tors of S and (J. The joint conditional density of the pivotal sta-

tistics P 1 = (S-S) /cr and 

determined by 

p = e-G 
2 

1 

given the configuration A is 



If the scale parameter is known and has the value 1, then a similar 

expression obtains. In that case, the conditional density of 
A 

p=(3-B 

given the configuration A= (~, ••• ,An) of residuals Ai = Yi - ~xi 

(i=l, ••• ,n) satisfies 

(2) 

where l(S;Y) is the log likelihood function for B based on Y. 

The use of (1) or (2) for exact conditional inference usually 

requires numerical integration over several dimensions, which can be 

cumbersome. Accurate approximate methods for inference that require 

less computation are therefore of interest, and log likelihood ratio 

statistics are a possible basis for such methods. 

Suppose that q of the parameters Sl, •.• ,Sp,e are of interest. 

The number of nuisance parameters is p - q + 1 or p - q, depending on 

whether the scale parameter is unknown or not. To simplify the nota-

tion, let </> = (WI' .•• ,Wq) consist of t.he parameters of interest, let 

¢ consist of the nuisance parameters, and let l(w) be the log like-

lihood function for W= (</>,¢) based on Y. Fixing the value of </>, 

the log likelihood ratio statistic for that parameter is 

where W is the unconstrained maximum likelihood estimator of w and 

(</>,¢</» is the restricted maximum likelihood estimator of w corres-

ponding to the specified value of </>. For the case q = 1 in which a 

2 



scalar parameter is of interest, the signed square root of the log like-

lihood ratio statistic for ¢ = wI is defined by 

It is shown in the usual large-sample maximum likelihood theory 

that the marginal distributions of Wand R tend under mild conditions 

to the chi-squared distribution with q degrees of freedom 2 
Xq and the 

standard normal distribution N(O,l) respectively, as the sample size 

n increases. Hinkley (1978) has shown that these limits also hold for 

the conditional distributions of Wand R. 

The standard normal approximation to the conditional distribution 

of R has error of order 0 (n-l / 2), and the approximate confidence 
p 

limits thus obtained are correct to that order. The error of the 

N(O,l) approximation can be reduced to order by taking the 

conditional mean of R into account, and this error can be further 

reduced to 0 (n-3/ 2) by adjusting for both the conditional mean and 
p 

variance of R. Formulae for these mean and variance adjustments are 

given in section 2. Such corrections to the signed roots of log like-

lihood ratio statistics for scalar parameters have been discussed very 

generally by Barndorff-Nielsen (1986) and in the case of location-scale 

models by DiCiccio (1987). 

The chi-squared approximation to the conditional distribution of 

W has error of order 
-1 o (n ), and this error can be reduced to order 

p 

o (n-3/ 2) by the use of a scaling factor which accounts for the 
p 
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conditional mean of W. A formula for this adjustment factor is 

given in section 3. Such corrections for log likelihood ratio statis-

tics, often referred to as Bartlett adjustments, have been discussed 

very generally by Barndorff-Nielsen and Cox (1984). 

2. Approximate Inference for a Scalar Parameter 

Adopting the notation of Sprott (1980), let 

I = [d 3l(W)/dW dWbdW] A abc a c w=w 

Thus 1= «lab» is the observed information matrix for W, and 

I-I = «lab» is its inverse. In the expressions that follow, it is 

convenient to make use of the notation convention for which summation 

over every index appearing both as a subscript and a superscript is 

understood. The range of summation is from 1 to p + 1 if the scale 

parameter is unknown and from 1 to p otherwise. 

Sprott (1980) has shown that the Taylor expansion of W(Wl ) 

A 

about WI is 

(3) 

where 

4 



Note that A is 0 (n-l / 2) and B p . is 

R(Wl ) has the expansion 

-1 o (n ). 
p 

It follows that 

(4) 

Using calculations similar to those described by Hinkley (1978), 

expressions (1) and (2) allow the conditional cumulants of R to be 

determined with error of order 0 (n-3/ 2). Ignoring terms of that 
p 

order, the conditional mean and variance of Rare 

2 
- m 

(5) 

and the higher-order conditional cumulants of R are zero. Note that 

m is of order 0 (n-1/ 2) and involves second- and third-order 
p 
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derivatives, whereas 2 s is and involves derivatives up 

to the fourth order. Since the N(O,l) approximation to the condi

tional distribution of R - m has error of order 0 (n -1) and can be 
p 

used to find approximate confidence limits correct to that order, it 

is thus possible to improve the accuracy of the usual large-sample 

approximation by taking third-order derivatives into account. The 

N(O,l) approximation for (R-m)/s has error of order 0 (n-3/ 2 ) , 
p 

but the improvement in accuracy achieved by using s requires fourth-

order derivatives and a substantial increase in computation. 

When testing a 'single hypothesized value of W1 ' the approximate 

procedures based on R are not difficult to implement; however, when 

setting approximate confidence limits for W1 ' these procedures can be 

complicated by the necessity of calculating the restricted maximum 

likelihood est ima te of w for each of several values of wI. By 

inverting expansion (4) and ignoring terms of order 0 (n-3 /
2
), the 

p 

r", + 1. Ar2 +~(3B+5A2) 3 
"'" 6 (l 72 r (l , 

where r =m+ sz 
(l (l 

and is the (l quantile of the N(O,l) dis-

tribution. Thus, correct to order 

dence limit for WI is 

6 

o (n-3/ 2), the upper a confi
p 

(6) 



Expression (6) provides the same order of accuracy as the direct use 

of the N(O,l) approximation for (R-m)/s in setting approximate 

confidence limits, and it is usually much simpler to apply. However, 

in very small samples, expression (6) may suffer from failure of mono-

tonicity and produce inaccurate results. In such cases, the use of 

(R-m)/s is preferable. 

It is evident from (6) that correct to order o (n -1) 
p 

the upper 

a confidence limit for 001 is 

For general scalar parameter models, Cox (1980) and McCullagh (1984) 

have derived expansions of conditional confidence limits correct to 

-1 order 0 (n ), and Barndorff-Nielsen (1985, 1986) has derived a 
p 

similar expansion correct to order 0 (n-3/ 2). In the present 
p 

regression context, if there are no nuisance parameters present, 

(7) 

expansion (6) is equivalent to Barndorff-Nielsen'sapproximate limit, 

and (7) is equivalent to the limits of Cox and McCullagh. 

The methods discussed in this section can be applied for approx-

imate inference concerning the a quantile Ya of an observation 

Y corresponding to a specified set of covariate values x = (xl' ••• , 

T x) • This application is achieved by formulating the model so that 
p 

Ya appears as one of the regression coefficients. For instance, if 

Sl is an intercept term and XII = ••• = xnl = Xl = I, then Ya = l\ + 

S2x2 + ..• + B x + oe , where 
p p a 

is the a quantile of 
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(i=l, ••• , n), with Ya replacing 61 • Using this formu-

lation of the model, the mean and variance adjustments to the signed 

root of the log likelihood ratio statistic for can be derived from 

expression (5), and expressions (6) and (7) provide approximate confidence 

limits. 

Example 1. In location-scale models, for which p = 1 and 

(i=l, ••. ,n), the accuracy of the approximate methods can feasibly be 

assessed by comparison with exact conditional results. Fraser (1979, 

p. 26) has presented a location-scale analysis of Darwin's data assum-

ing that the error variables have Student's distribution with A 

degrees of freedom. Darwin's data consists of 15 observations. Using 

likelihood methods, Fraser concluded that values of A in the range 

1 to 9 are well supported by the data. Fraser's analysis includes 

the one-sided significance level for the hypothesis J1 = 0 and 95% 

confidence intervals for J1 and (J in each of the cases A= 1,3,6,9, 

and 00 For these values of A, the exact significance levels are 

0.041%, 0.300%, 0.765%, 1.114%, and 2.485% respectively; the levels 

obtained from the N(O,l) approximation for (R-m)/s are 0.034%, 

0.310%, 0.774%, 1.102%, ~d 2.437%. Table 1 shows the approximate 

95% confidence intervals for ~ and a obtained from (R-m)/s and 

expression (6). Each endpoint of the approximate intervals is accom-

panied by its true conditional significance level determined by numeri-

cal integration. Both methods give fairly accurate approximations, and 

similar accuracy is obtained for the approximate intervals of other 
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confidence levels. Sprott (1980, 1982) bas described a different 

approach to approximate conditional inference in location-scale models, 

and he also considered Darwin's data. 

3. Bartlett Adjustments 

Suppose that the q-dimensiona1 vector cp = (C1)1" •• ,(1)q) 

interest, and let 

r = 

is of 

be the partitioned observed information matrix for ()j = (CP,ljI). By 

using an expansion of W(¢) about ¢ in conjunction with (1) and (2), 

it can be shown that to error of order 0 (n-3/ 2) the conditional 
p 

expectation of the log likelihood ratio statistic for ¢ is 

b + 1 r (rabrcd _ KabKcd) +~ r r {3(rabrcdref _ KabKcdKef) 
cp = q "4 abcd 12 abc def 

(8) 

where K = «Kab» is def !ned by 

K= 

9 



2 
The Xq approximation to the conditional distribution of W(~) 

-1 has error of order 0 (n ), while the error in the approximation for 
p 

-1 -3/2 
(b~/ q) W(~) is of order 0p (n ). Dividing W(¢l) by (b¢l/q) pro-

duces a quantity whose conditional distribution is better approximated 

by the X! distribution. In the case q = 1, Kab = rab _ ra1rb1/Ill = 

J ab 2 2 s2 and the adjustment (8) equals s +m , where and m are as 

defined in (5). 

Example 2. Consider the location-scale model of Darwin's data 

described in Example 1, and let A = 3. The approximate 90%, 95%, and 

99% confidence intervals for ~ determined using the Bartlett adjust-

ment are (12.93, 40.34), (9.72, 43.24), and (2.49, 49.47), which have 

true conditional coverage probabilities 89.9%, 94.9%, and 99.0%. The 

approximate intervals for cr are (15.38, 38.83), (14.l5, 42.78), and 

(12.03, 52.01), having true conditional confidence levels 89.9%, 94.9%, 

and 99.0%. The use of the Bartlett adjustments produces very accurate 

approximations in this situation. 

4. A Summary of Derivatives 

This section presents formulae for the calculation of derivatives 

of the log likelihood function for a and e evaluated at the maximum 

likelihood estimators. The second-, third-, and fourth-order deriva-

tives are 
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1 =_n+U2g(2)(A) 
ee i i· 

10 Q e=-&2L:x. x.
b
{2g(2)(A.)+A.g(3)(A)} 

fJ af.'b l.a l. l. l. i' 

10 ee = _&-lLx. {3A.g(2) (A ) +A2g(3) (A )} 
fJ a l.a l. iii' 

Ieee = n - L{3A~g(2) CA.) +A3g (3) CA )} 
l. l. ii' 

10 Q Q e = &-3 LX. x.bx ... {3g(3) (Ai) +A.g(4) (A )} 
j.> af.'bf.' c l.a l. l.C l. i' 

Is f3 e8=&-2 LX. x.
b

{4g(2)(A.)+5A.g(3)(A ) +A2g(4) (A )} 
ab l.al. J. l. iii' 

11 



where 

etc. (a,b,c,d=l, ... ,p) g = log f, and each sum is taken over 

i=l, ... ,n. 
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Table 1. Approximate conditional 95% confidence intervals 

for II and CJ from Darwin's data 

II CJ 

(R-m)/s (6) (R-m)/s (6) 

1 13 .16,41. 08 12.62,41. 70 8.11,34.06 8.12,33.88 

(2.72,2.24) (2.28,1.92) (2.65,2.54) (2.66,2.63) 

3 9.43,42.95 9.83,43.14 15.16,45.07 15.16,45.10 
(2.48,2.54) (2.71,2.43) (2.44,2.56) (2.45,2.54) 

6 5.79,43.01 5.83,42.99 19.50,50.99 19.49,50.90 
(2.48,2.61) (2.50,2.62) (2.45,2.60) (2.44,2.64 ) 

9 4.12,42.85 4.12,42.75 21.69,53.51 21.68,53.43 
(2.52,2.59) (2.52,2.65) (2.43,2.62) (2 .42,2. 65) 

00 0.13,41. 73 0.22,41. 65 27.59,59.29 27.58,59.24 
(2.55,2.55) (2.59,2.59) (2.44,2.59) (2.43,2.62) 

The true conditional one-sided significance levels of the interval 
endpoints are shown as percentages in parentheses. 
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